Showing all 9 results

Li-Ion Airsoft battery

A lithium-ion battery or Li-ion battery (abbreviated as LIB) is a type of rechargeable battery. Lithium-ion batteries are commonly used for portable electronics and electric vehicles and are growing in popularity for military and aerospace applications. It was developed by John Goodenough, Rachid Yazami and Akira Yoshino in the 1980s, building on a concept proposed by M Stanley Whittingham in the 1970s.

In the batteries lithium ions move from the negative electrode to the positive electrode during discharge and back when charging. Li-ion batteries use an intercalated lithium compound as one electrode material, compared to the metallic lithium used in a non-rechargeable lithium battery. The batteries have a high energy density, no memory effect (other than LFP cells) and low self-discharge. They can however be a safety hazard since they contain a flammable electrolyte, and if damaged or incorrectly charged can lead to explosions and fires. Samsung were forced to recall Galaxy Note 7 handsets following lithium-ion fires,[12] and there have been several incidents involving batteries on Boeing 787s.

Chemistry, performance, cost and safety characteristics vary across LIB types. Handheld electronics mostly use LIBs based on lithium cobalt oxide (LiCoO
2), which offers high energy density but presents safety risks,especially when damaged. Lithium iron phosphate (LiFePO
4), lithium ion manganese oxide battery (LiMn
4, Li
3, or LMO), and lithium nickel manganese cobalt oxide (LiNiMnCoO
2 or NMC) offer lower energy density but longer lives and less likelihood of fire or explosion. Such batteries are widely used for electric tools, medical equipment, and other roles. NMC in particular is a leading contender for automotive applications.

Research areas for lithium-ion batteries include life extension, energy density, safety, cost reduction, and charging speed, among others. Research has been under way in the area of non-flammable electrolytes as a pathway to increased safety based on the flammability and volatility of the organic solvents used in the typical electrolyte. Strategies include aqueous lithium-ion batteries, ceramic solid electrolytes, polymer electrolytes, ionic liquids